Abstract:Polyurea was compounded with ammonium polyphosphate and expandable graphite and the morphology was studied by atomic force microscopy. The thermal degradation of polyurea and polyurea compounded with the additives has been investigated using thermogravimetry coupled with Fourier Transform infrared spectroscopy and mass spectrometry. The study of the thermal degradation and the parameters affecting the thermal stability of PU is essential in order to effectively design flame retarded polyurea. In general, thermal decomposition of polyurea occurs in two steps assigned to the degradation of the hard segment and soft segment, respectively. Adding these additives accelerates the decomposition reaction of polyurea. However, NOT THE PUBLISHED VERSION; this is the author's final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page.Polymer, Vol. 51, No. 11 (May 2010): pg. 2277-2285. DOI. This article is © Elsevier and permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.2 it is clear that more char is formed. This char is thermally more stable than the carbonaceous structure obtained from neat PU. The intumescent shield traps the polymer fragments and limits the evolution of small flammable molecules that are able to feed the flame.