Wildlife research has been indispensable for increasing our insight into ecosystem functioning as well as for designing effective conservation measures under the currently high rates of biodiversity loss. Genetic and genomic analyses might be able to yield the same information on, e.g., population size, health, or diet composition as other wildlife research methods, and even provide additional data that would not be possible to obtain by alternative means. Moreover, if DNA is collected non-invasively, this technique has only minimal or no impact on animal welfare. Nevertheless, the implementation rate of noninvasive genetic assessment in wildlife studies has been rather low. This might be caused by the perceived inefficiency of DNA material obtained non-invasively in comparison with DNA obtained from blood or tissues, or poorer performance in comparison with other approaches used in wildlife research. Therefore, the aim of this review was to evaluate the performance of noninvasive genetic assessment in comparison with other methods across different types of wildlife studies. Through a search of three scientific databases, 113 relevant studies were identified, published between the years 1997 and 2020. Overall, most of the studies (94%) reported equivalent or superior performance of noninvasive genetic assessment when compared with either invasive genetic sampling or another research method. It might be also cheaper and more time-efficient than other techniques. In conclusion, noninvasive genetic assessment is a highly effective research approach, whose efficacy and performance are likely to improve even further in the future with the development of optimized protocols.