Background
Listeria monocytogenes is a foodborne pathogen that causes listeriosis in humans. This pathogen activates multiple regulatory mechanisms in response to stress, and cobalamin biosynthesis might have a potential role in bacterial protection. Low temperature is a strategy used in the food industry to control bacteria proliferation; however, L. monocytogenes can grow in cold temperatures and overcome different stress conditions. In this study we selected L. monocytogenes List2-2, a strain with high tolerance to the combination of low temperatureâ+âcopper, to understand whether the cobalamin biosynthesis pathway is part of the tolerance mechanism to this stress condition. For this, we characterized the transcription level of three cobalamin biosynthesis-related genes (cbiP, cbiB, and cysG) and the eutV gene, a transcriptional regulator encoding gene involved in ethanolamine metabolism, in L. monocytogenes strain List2-2 growing simultaneously under two environmental stressors: low temperature (8 °C)â+âcopper (0.5 mM of CuSO4âĂâ5H2O). In addition, the gene cbiP, which encodes an essential cobyric acid synthase required in the cobalamin pathway, was deleted by homologous recombination to evaluate the impact of this gene in L. monocytogenes tolerance to a low temperature (8 °C)â+âdifferent copper concentrations.
Results
By analyzing the KEGG pathway database, twenty-two genes were involved in the cobalamin biosynthesis pathway in L. monocytogenes List2-2. The expression of genes cbiP, cbiB, and cysG, and eutV increased 6Â h after the exposure to low temperatureâ+âcopper. The cobalamin cbiP mutant strain List2-2ÎcbiP showed less tolerance to low temperatureâ+âcopper (3Â mM) than the wild-type L. monocytogenes List2-2. The addition of cyanocobalamin (5Â nM) to the medium reverted the phenotype observed in List2-2ÎcbiP.
Conclusion
These results indicate that cobalamin biosynthesis is necessary for L. monocytogenes growth under stress and that the cbiP gene may play a role in the survival and growth of L. monocytogenes List2-2 at low temperatureâ+âcopper.