In the past two decades, serious outbreaks of foodborne disease were caused by Listeria monocytogenes, a pathogen frequently found in delicatessens at retail. Although the prevalence of listeriosis is not high, the severity of disease is significant, with high hospitalization and mortality rates. Potential sources of L. monocytogenes and food contamination routes in retail and food service operations include incoming raw materials, food products, food handlers, customers, vendors and environmental sources. Risk mitigation strategies for L. monocytogenes should be based on integrated control along the food chain continuum, from farm to retail establishment.
The presence of Listeria monocytogenes was evaluated in a small-scale meat processing facility in Montenegro during 2011-2014. L. monocytogenes isolates from traditional meat products and environmental swabs were subjected to a) molecular characterization b) serotyping by both multiplex PCR and next generation sequencing (NGS) c) potential antimicrobial resistance (AMR) was assessed by extraction of specific genes from NGS data and d) screening for the presence of some disinfectant resistance markers. Overall, traditional meat products were contaminated, most likely from incoming raw materials, with 4 major specific STs of L. monocytogenes (ST515, ST8, ST21, ST121) representing 4 clonal complexes (CC1, CC8, CC21, CC121) identified during the four-year period. These strains belonged to serogroup IIa which predominated, followed by IVb (ST515, CC1). The strains from environmental swabs belonged, exclusively, to ST21 and were isolated from cutting board and floor swabs in 2011. Furthermore, we found Tn6188, a novel transposon conferring tolerance to BC, to be specific to sequence type ST121. In addition, antimicrobial resistance genes mprF and fosX were present in clonal complexes CC21 and CC121, while complexes CC8 and CC1 exclusively harbored the mprF antimicrobial resistance gene.Molecular characterization of Listeria monocytogenes isolates from a small-scale meat processor in Montenegro, 2011Montenegro, -2014
Abstract. Meat is a perishable product with a short shelf life and therefore short selling times. Therefore, cold chain management in meat supply is of utmost importance for the maintenance of quality and safety of meat/meat products. Raw meat/meat products are likely to support the growth of pathogenic microorganisms and/or spoilage bacteria, and should be kept at temperatures that do not result in a risk to health. The cold chain should not be interrupted at all times along the meat distribution chain. The complexity of global meat supply chain, with frequently long distribution chains associated with transportation of the product within one country, from one to another country and from one to another continent, makes the solutions for the chilling and freezing regimes, as well as monitoring of time-temperature profiles, very important for the overall success in delivery of product which will be accepted by consumer for its freshness and safety levels. From recently, there are several available options for control and management of the cold chain, such as chilled and frozen storage combinations, superchilling, ionizing radiation, biopreservation, high hydrostatic pressure (HHP), active packaging, wireless sensors, supported with the software-based cold chain database (CCD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.