Background and objectives
The products of the Maillard reaction formed from reducing sugars and amino groups are attracting increasing interests as an important dietary antioxidant source. However, acrylamide is also formed during the process, which is a potential carcinogenic substance. The objective of this study was to investigate the effects of various types and amounts of added sugars and amino acids on the formation of acrylamide in white pan bread. Breads were prepared with five sugars (sucrose, glucose, fructose, maltose, and ribose) at three levels (0, 6, and 12 g/100 g flour) and seven amino acids (lysine, alanine, proline, glycine, arginine, threonine, and asparagine) at three levels (0, 0.1 g, and 0.3 g/100 g flour), and the acrylamide content was analyzed by GC‐MS for both the crust and the crumb.
Findings
Bread with 6 g/100 g flour fructose had the highest crust acrylamide content of 102.6 μg/kg as compared with other sugars, while the addition of ribose caused the lowest crust acrylamide content (41.0 μg/kg). The addition of asparagine into the bread formula dramatically increased the acrylamide content of crust as expected, while the addition of glycine and proline decreased crust acrylamide. Significant contents of acrylamide were also detected in bread crumbs.
Conclusions
Both the type and amount of added sugars and amino acids in bread formulas affect the amount of acrylamide produced in bread products.
Significance and novelty
Our study provides a systematic understanding of the effects of added sugars and amino acids on acrylamide formation in wheat bread. This research will benefit industries in developing reduced acrylamide formulas for common bakery products.