The dietary habits of the adolescent population with a high intake of snack and fast foods mean that they consume a high rate of which in turn leads to the development of different degenerative disorders. There are few studies available on MRP absorption and metabolism. We investigated the effects of a MRP-high and a MRP-low diet on carboxymethyllysine (CML) intake and excretion in 11-14 years adolescent males. In a 2-period crossover trial, 20 healthy subjects were randomly assigned to two groups. The first group consumed the MRP-low diet for 2 weeks, observed a 40-day washout period, and then consumed the MRP-high diet for 2 weeks. The second group received the diets in the reverse order. Subjects collected urine and faeces on the last 3 days of each dietary period. The consumption of the MRP-high diet led to a higher CML input (P < 0.05) (11.28 vs. 5.36 mg/day CML for MRP-high and -low diet, respectively). In parallel, the faecal excretion was also greater (P < 0.05) (3.52 vs. 1.23 mg/day CML, respectively) and proportional to the dietary intake. The urinary elimination of CML was not increased significantly when the MRP-high diet was consumed compared to consumption of the MRP-low diet, and was not proportional to the dietary exposure of CML. In conclusion it was shown that CML absorption and faecal excretion were highly influenced by dietary CML levels. Since the compound has long-term effects on health, an excessive intake deserves attention, especially in a population nutritionally at risk as adolescents.
The kidney is not the only organ affected by the accumulation of dCML. Its high accumulation in other tissues and organs may also, however, have important physiological consequences.
Milk proteins are frequently used as supplements in fortified foods. However, processing produces chemical changes which likely affect the nutritional advantage. This study was intended to explore the possible difference in digestibility between extruded and non-extruded caseins and how the dietary N (ε) -carboxymethyllysine (CML) is metabolised. Normal rats were randomized into either an extruded protein diet (EP) or the same with unextruded proteins (UEP), for two periods of 2 weeks at 7 to 9 and 11 to 13 weeks of age. However, no difference in protein digestibility was detected between the two diets, either in young or in adult animals, despite a 9.4-fold higher level of CML and an 8.5-fold higher level of lysinoalanine in the EP than in the UEP. No diet-related changes were observed in plasma CML, either protein bound or free. Amounts of 38 and 48 % of the orally absorbed CML were excreted in urine and faeces, respectively, in UEP-fed rats. Lower rates of excretion were found in the EP-fed rats (23 and 37 %, respectively). A second animal study using a single oral dose of free CML (400 μg/rat) was set up to measure the systemic concentration of CML every hour from 0 to 4 h. It revealed that protein-bound CML was not affected by the oral dose of CML, and the highest free CML level found in the circulation was 600 ng/mL. Extruded proteins, therefore, appear to be well digested, and CML rapidly eliminated. Since its elimination is, however, incomplete, the question of its biodistribution and metabolism remains open.
Chronic CML ingestion induced endothelial dysfunction, arterial stiffness and aging in a RAGE-dependent manner.
Our aim was to investigate carboxymethyl-lysine (CML) intake and excretion after feeding rats with diets containing advanced glycation end-products (AGEs) from bread crust (BC) or its soluble or insoluble fractions, and to identify the factors responsible for the effects observed. CML in serum and different tissues was measured to detect possible accumulations. For 88 days, weanling rats were fed with either a control diet or one containing BC, or its soluble low molecular weight (LMW), soluble high molecular weight (HMW) or insoluble fractions. In the last week of the assay, faeces and urine were collected daily and stored as a 1 week pool. After sacrifice, blood was drawn to obtain serum and some organs were removed. CML analysis was performed by HPLC/MS/MS in diets, faeces, urines, serum and tissues. Faecal excretion of CML was strongly influenced by dietary CML levels and represents the major route of excretion (i.e. 33.2%). However, the urinary elimination of CML was probably limited or saturated, especially when more complex compounds were present in the diet. BC consumption increased CML in the cardiac tissue (170 ± 18 vs. 97 ± 3 μmol per mol lysine for BC and control groups), which correlated with the CML intake. The levels of this AGE in bone were unaffected by the dietary treatment, but in tail tendons CML was greatly increased in the animals that consumed the BC diet (102 ± 13 vs. 51 ± 8 μmol per mol lysine for BC and control groups, P = 0.006), which was associated with the intake of soluble LMW compounds present in BC. Despite the CML accumulation detected in different tissues, serum levels of protein-bound CML were unchanged, indicating the importance of measuring the free CML in this fluid as a real index of dietary CML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.