Bovine oocyte maturation in vitro frequently results in abnormal cytoplasmic maturation and failure to acquire developmental competence. This is, in part, likely to be due to the non-physiological nutritional milieu to which oocytes are exposed. Improvements in oocyte developmental potential may be achieved by modelling nutrient profiles on those of preovulatory follicular fluid (FF). However, little is known about fluctuations in FF nutrient levels according to follicle dominance and oestrous cyclicity. This study therefore characterised the carbohydrate and amino acid profile of FF according to these parameters, and compared preovulatory FF composition with that of maturation medium. Carbohydrate concentrations (n 5 121) were determined enzymatically whilst amino acid profiles (n 5 40) were determined by reverse-phase HPLC. Pyruvate and glucose concentrations were unaffected by follicle dominance, whereas Stage III -IV lactate profiles were higher in non-dominant FF (P < 0.01). While most dominant FF amino acid concentrations were affected by oestrous stage, only glutamate, alanine, leucine and lysine levels fluctuated in non-dominant FF. Glucose and lactate concentrations were significantly negatively correlated, whereas most amino acids were significantly positively correlated with each other. Maturation medium had higher pyruvate and lower lactate concentrations than preovulatory FF (P < 0.001), whereas glucose level was similar. All amino acid levels (except histidine, taurine, alanine and tryptophan) differed significantly between maturation medium and preovulatory FF. These data indicated that FF composition varies throughout the oestrous cycle. Preovulatory FF nutrient profile differed from that of maturation medium, perhaps accounting for the poor developmental competence of in vitro matured oocytes. These data may contribute to the formulation of a nutritionally more physiological maturation medium.