2020
DOI: 10.1007/978-3-030-58555-6_28
|View full text |Cite
|
Sign up to set email alerts
|

Fair DARTS: Eliminating Unfair Advantages in Differentiable Architecture Search

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

3
205
0

Year Published

2020
2020
2022
2022

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 233 publications
(208 citation statements)
references
References 15 publications
3
205
0
Order By: Relevance
“…3.3 1.3 *DropNAS (Hong et al, 2020) 2.58±0.14 4.1 0.6 *PC-DARTS (Xu et al, 2020) 2.57±0.07 3.6 0.1 *FairDARTS (Chu et al, 2019) 2.54 3.3 0.4 *DrNAS 2.54±0.03 4.0 0.4 *GTN 2.92±0.06 8.2 0.67 *GTN(F=128) 2.42±0.03 97.9 0.67 *DARTS-1st 3.00±0.14 3.3 0.4 LBT(RN18,DARTS-1st) (ours) 2.87±0.05 3.2 0.6 LBT(RN50,DARTS-1st) (ours) 2.79±0.07 3.3 0.7 *DARTS-2nd 2.76±0.09 3.3 1.5 LBT(RN18,DARTS-2nd) (ours) 2.65±0.03 3.4 1.9 LBT(RN50,DARTS-2nd) (ours) 2.61±0.05 3.4 2.1 *P-DARTS 2.50 3.4 0.3 LBT(RN18,P-DARTS) (ours) 2.64±0.11 3.4 0.4 LBT(RN50,P-DARTS) (ours) 2.57±0.15 3.4 0.5 *PC-DARTS (Xu et al, 2020) 2.57±0.07 3.6 0.1 LBT(RN18,PC-DARTS) (ours) 2.59±0.03 3.7 0.1 LBT(RN50,PC-DARTS) (ours) 2.56±0.04 3.7 0.2 in the third column and fourth column, the model size and search cost of our methods are similar to those of baselines.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…3.3 1.3 *DropNAS (Hong et al, 2020) 2.58±0.14 4.1 0.6 *PC-DARTS (Xu et al, 2020) 2.57±0.07 3.6 0.1 *FairDARTS (Chu et al, 2019) 2.54 3.3 0.4 *DrNAS 2.54±0.03 4.0 0.4 *GTN 2.92±0.06 8.2 0.67 *GTN(F=128) 2.42±0.03 97.9 0.67 *DARTS-1st 3.00±0.14 3.3 0.4 LBT(RN18,DARTS-1st) (ours) 2.87±0.05 3.2 0.6 LBT(RN50,DARTS-1st) (ours) 2.79±0.07 3.3 0.7 *DARTS-2nd 2.76±0.09 3.3 1.5 LBT(RN18,DARTS-2nd) (ours) 2.65±0.03 3.4 1.9 LBT(RN50,DARTS-2nd) (ours) 2.61±0.05 3.4 2.1 *P-DARTS 2.50 3.4 0.3 LBT(RN18,P-DARTS) (ours) 2.64±0.11 3.4 0.4 LBT(RN50,P-DARTS) (ours) 2.57±0.15 3.4 0.5 *PC-DARTS (Xu et al, 2020) 2.57±0.07 3.6 0.1 LBT(RN18,PC-DARTS) (ours) 2.59±0.03 3.7 0.1 LBT(RN50,PC-DARTS) (ours) 2.56±0.04 3.7 0.2 in the third column and fourth column, the model size and search cost of our methods are similar to those of baselines.…”
Section: Resultsmentioning
confidence: 99%
“…*Inception-v1 (Szegedy et al, 2015) 30.2 10.1 6.6 -*MobileNet (Howard et al, 2017) 29.4 10.5 4.2 -*ShuffleNet 2× (v2) (Ma et al, 2018) 25.1 7.6 7.4 -*NASNet-A 26.0 8.4 5.3 1800 *PNAS (Liu et al, 2018a) 25.8 8.1 5.1 225 *MnasNet-92 (Tan et al, 2019) 25.2 8.0 4.4 1667 *AmoebaNet-C (Real et al, 2019) 24.3 7.6 6.4 3150 *SNAS-CIFAR10 27.3 9.2 4.3 1.5 *BayesNAS-CIFAR10 26.5 8.9 3.9 0.2 *PARSEC-CIFAR10 (Casale et al, 2019) 26.0 8.4 5.6 1.0 *GDAS-CIFAR10 (Dong and Yang, 2019) 26.0 8.5 5.3 0.2 *DSNAS-ImageNet 25.7 8.1 --*SDARTS-ADV-CIFAR10 25.2 7.8 5.4 1.3 *PC-DARTS-CIFAR10 (Xu et al, 2020) 25.1 7.8 5.3 0.1 *ProxylessNAS-ImageNet (Cai et al, 2019) 24.9 7.5 7.1 8.3 *FairDARTS-CIFAR10 (Chu et al, 2019) 24.9 7.5 4.8 0.4 *FairDARTS-ImageNet (Chu et al, 2019) 24.4 7.4 4.3 3.0 *DrNAS-ImageNet 24.2 7.3 5.2 3.9 *DARTS − -ImageNet (Chu et al, 2020a) 23.8 7.0 4.9 4.5 *DARTS + -CIFAR100 23.7 7.2 5.1 0.2 *DARTS-2nd(CIFAR10) 26.7 8.7 4.7 1.5 LBT(RN50,DARTS-2nd,CIFAR10) (ours) 25.5 7.9 4.8 2.1 *P-DARTS(CIFAR10) 24.4 7.4 4.9 0.3 LBT(RN50,P-DARTS,CIFAR10) (ours) 24.1 7.2 4.9 0.5 *P-DARTS(CIFAR100) 24.7 7.5 5.1 0.3 LBT(RN50,P-DARTS,CIFAR100) (ours)…”
Section: Resultsmentioning
confidence: 99%
“…3.3 1.3 *DropNAS (Hong et al, 2020) 2.58±0.14 4.1 0.6 *PC-DARTS (Xu et al, 2020) 2.57±0.07 3.6 0.1 *FairDARTS (Chu et al, 2019) 2.54 3.3 0.4 *DrNAS 2.54±0.03 4.0 0.4 *P-DARTS 2.50 3.4 0.3 *DARTS-1st 3.00±0.14 3.3 0.4 LPT-R18-DARTS-1st (ours) 2.85±0.09 2.7 0.6 *DARTS-2nd 2.76±0.09 3. (Chu et al, 2020b), and DrNAS .…”
Section: Resultsmentioning
confidence: 99%
“…This shows that LPT is able to search betterperforming architectures without significantly increasing network size and search cost. A few additional remarks: 1) On CIFAR-100, DARTS-2nd with second-order approximation in the optimization algorithm is not advantageous compared with DARTS-1st which uses (Szegedy et al, 2015) 30.2 10.1 6.6 -*MobileNet (Howard et al, 2017) 29.4 10.5 4.2 -*ShuffleNet 2× (v1) 26.4 10.2 5.4 -*ShuffleNet 2× (v2) (Ma et al, 2018) 25.1 7.6 7.4 -*NASNet-A 26.0 8.4 5.3 1800 *PNAS (Liu et al, 2018a) 25.8 8.1 5.1 225 *MnasNet-92 (Tan et al, 2019) 25.2 8.0 4.4 1667 *AmoebaNet-C (Real et al, 2019) 24.3 7.6 6.4 3150 *SNAS 27.3 9.2 4.3 1.5 *BayesNAS 26.5 8.9 3.9 0.2 *PARSEC (Casale et al, 2019) 26.0 8.4 5.6 1.0 *GDAS (Dong and Yang, 2019) 26.0 8.5 5.3 0.2 *DSNAS 25.7 8.1 --*SDARTS-ADV 25.2 7.8 5.4 1.3 *PC-DARTS (Xu et al, 2020) 25.1 7.8 5.3 0.1 *ProxylessNAS (Cai et al, 2019) 24.9 7.5 7.1 8.3 *FairDARTS (Chu et al, 2019) 24.9 7.5 4.8 0.4 *P-DARTS (CIFAR-100) 24.7 7.5 5.1 0.3 *P-DARTS (CIFAR-10) 24.4 7.4 4.9 0.3 *FairDARTS (Chu et al, 2019) 24.4 7.4 4.3 3.0 *DrNAS 24.2 7.3 5.2 3.9 *PC-DARTS (Xu et al, 2020) 24.2 7.3 5.3 3.8 *DARTS + (Liang et al, 2019a) 23.9 7.4 5.1 6.8 *DARTS − (Chu et al, 2020a) 23.8 7.0 4.9 4.5 *DARTS + (CIFAR-100) (Liang et al, 2019a) 23. (Chu et al, 2020a) and DrNAS .…”
Section: Resultsmentioning
confidence: 99%
“…3.3 1.3 *DropNAS (Hong et al, 2020) 2.58±0.14 4.1 0.6 *FairDARTS (Chu et al, 2019) 2.54 3.3 0.4 *DrNAS 2.54±0.03 4.0 0.4 *DARTS-1st 3.00±0.14 3.3 0.4 SGL-DARTS-1st (ours) 2.41±0.06 3.7 1.2 *DARTS − (Chu et al, 2020a) 2.59±0.08 3.5 0.4 † DARTS − (Chu et al, 2020a) 2.97±0.04 3.3 0.6 SGL-DARTS − (ours) 2.60±0.07 3.1 2.0 *P-DARTS 2.50 3.4 0.3 SGL-P-DARTS (ours) 2.47±0.10 3.6 2.1 *PC-DARTS (Xu et al, 2020) 2.57±0.07 3.6 0.1 SGL-PC-DARTS (ours) 2.60±0.12 3.5 0.5 Table 3: Results on CIFAR-10. * means the results are taken from DARTS − (Chu et al, 2020a), NoisyDARTS (Chu et al, 2020b), and DrNAS .…”
Section: Methodsmentioning
confidence: 99%