The recent discovery of methods to isolate graphene 1-3 , a one-atom-thick layer of crystalline carbon, has raised the possibility of a new class of nano-electronics devices based on the extraordinary electrical transport and unusual physical properties 4,5 of this material. However, the experimental realization of devices displaying these properties was, until now, hampered by the influence of the ambient environment, primarily the substrate. Here we report on the fabrication of Suspended Graphene (SG) devices and on studies of their electrical transport properties. In these devices, environmental disturbances were minimized allowing unprecedented access to the intrinsic properties of graphene close to the Dirac Point (DP) where the energy dispersion of the carriers and their density-of-states vanish linearly giving rise to a range of exotic physical properties. We show that charge inhomogeneity is reduced by almost one order of magnitude compared to that in Non-Suspended Graphene (NSG) devices. Moreover, near the DP, the mobility exceeds 100,000 cm 2 /Vs, approaching theoretical predictions for evanescent transport in the ballistic model. The low energy excitation spectrum of graphene mimics relativistic particles -massless Dirac fermions (DF) -with an electron-hole symmetric conical energy dispersion and .vanishing density of states at the DP. Such unusual spectrum is expected to produce 1 novel electronic properties such as negative index of refraction 6 , specular Andreev reflections at graphene-superconductor junctions 7,8 , evanescent transport 9 , anomalous phonon softening 10 , etc. A basic assumption behind these intriguing predictions is that the graphene layer is minimally affected by interactions with the environment. However in reality the environment 11,12 and in particular the substrate 13 , can be quite invasive for such ultra-thin films. For example, the carrier mobility in graphene deposited on a substrate such as Si/SiO 2 deteriorates due to trapped charges in the oxide or to contaminants that get trapped at the graphene-substrate interface during fabrication. The substrate-induced charge inhomogeneity is particularly deleterious near the DP where screening is weak, 14,15 leading to reduced carrier mobility there. In addition, the atomic roughness of the substrate introduces short range scattering centers and may contribute to quench-condensation of ripples within the graphene layer 16 .In order to eliminate substrate induced perturbations, graphene films were suspended from Au/Ti contacts to bridge over a trench in a SiO 2 substrate. In contrast to prior realizations of suspended graphene 17,18 which did not provide electrical contacts for transport measurements, the SG devices described here incorporate multiple electrodes that allow 4-lead transport measurements. The SG devices employed here were fabricated from conventional NSG devices using wet chemical etching (see supporting online material). In a typical SG device, shown in Figure 1b, the graphene layer is suspended from the voltage l...
We describe a simple process for the fabrication of ultrathin, transparent, optically homogeneous, electrically conducting films of pure single-walled carbon nanotubes and the transfer of those films to various substrates. For equivalent sheet resistance, the films exhibit optical transmittance comparable to that of commercial indium tin oxide in the visible spectrum, but far superior transmittance in the technologically relevant 2- to 5-micrometer infrared spectral band. These characteristics indicate broad applicability of the films for electrical coupling in photonic devices. In an example application, the films are used to construct an electric field-activated optical modulator, which constitutes an optical analog to the nanotube-based field effect transistor.
In graphene, which is an atomic layer of crystalline carbon, two of the distinguishing properties of the material are the charge carriers' two-dimensional and relativistic character. The first experimental evidence of the two-dimensional nature of graphene came from the observation of a sequence of plateaus in measurements of its transport properties in the presence of an applied magnetic field. These are signatures of the so-called integer quantum Hall effect. However, as a consequence of the relativistic character of the charge carriers, the integer quantum Hall effect observed in graphene is qualitatively different from its semiconductor analogue. As a third distinguishing feature of graphene, it has been conjectured that interactions and correlations should be important in this material, but surprisingly, evidence of collective behaviour in graphene is lacking. In particular, the quintessential collective quantum behaviour in two dimensions, the fractional quantum Hall effect (FQHE), has so far resisted observation in graphene despite intense efforts and theoretical predictions of its existence. Here we report the observation of the FQHE in graphene. Our observations are made possible by using suspended graphene devices probed by two-terminal charge transport measurements. This allows us to isolate the sample from substrate-induced perturbations that usually obscure the effects of interactions in this system and to avoid effects of finite geometry. At low carrier density, we find a field-induced transition to an insulator that competes with the FQHE, allowing its observation only in the highest quality samples. We believe that these results will open the door to the physics of FQHE and other collective behaviour in graphene.
A postsynthesis method of separating metallic from semiconducting single-walled carbon nanotubes and a method based on absorption spectroscopy for assay of the separation efficiency are described. The separation method relies on chemical discrimination in the charge-transfer complex formation between bromine and the metallic versus semiconducting nanotubes and takes advantage of the resulting density difference to effect a centrifugation-based separation. Calculations support the proposed separation mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.