Throughout the nervous system, neurons are closely surrounded by glial cells, leaving only a 20-nm wide extracellular space filled with interstitial fluid. Ions, transmitters, hormones, nutrients, and waste products all share this narrow diffusion pathway. Because the interstitial space occupies only a small volume, neuronal activity can lead to appreciable changes in the extracellular concentration of ions, protons, and neurotransmitters. These changes can affect neuronal activity and are believed to be influenced by glial cells. The proximity of glial processes to synapses and axons make glial cells ideal partners to sequester ions and transmitters released by neurons. The failure of glial cells to perform such essential homeostatic functions can have profound effects, and these homeostatic activities may constitute one way in which glial cells can influence neuronal signaling. In addition, glial cells, which, unlike most neurons, are coupled to each other through gap-junctions, communicate with each other and possibly also with adjacent neurons through propagated intracellular Ca 2+ waves. The importance of such interglial signaling is not understood. Additionally, glial cells and neurons mutually modulate their expression of ion channels, most likely through factors released into the extracellular space. The range of responses observed in glial cells and their intimate anatomical relationship with neurons suggest a broader role for glia than is currently appreciated. It also emphasizes the importance of a better understanding of glial-neuronal interactions to an understanding of brain function. The Neuroscientist 1: [328][329][330][331][332][333][334][335][336][337] 1995