Soil microorganisms play important roles in the dynamic regulation of organic matter in the forest ecosystem and are affected by different revegetation types. To reveal the influence of different revegetation types on soil microorganisms, we examined soil properties, soil microbial activity and diversity in Baishilazi Nature Reserve, including two planted coniferous forests (LG: Larix gmelinii, PK: Pinus koraiensis), two natural secondary broadleaf forests (JM: Juglans mandshurica, QM: Quercus mongolica), and one conifer-broadleaf forest (CB). Biolog-Eco plates were used to study soil microbial functional diversity. We found that the content of soil total C and total N existed higher under the broadleaf forests (JM, QM) than conifer-broadleaf forest (CB) and coniferous forests (LG, PK). Carbon source utilization capacity and soil microbial activity showed significant variations among different revegetation types. Soil microbial activity of natural secondary forests was significantly higher than planted coniferous forests, and JM created the highest soil microbial activity. Heatmap and PCA plot clearly differentiated among the different samples. The broadleaf forests, conifer-broadleaf forest and coniferous forests were well separated from each other, especially along the PC1, and the position of conifer-broadleaf forest was intermediate. The findings of canonical correspondence analysis (CCA) suggested that soil total C and total N were the main factors affecting soil microbial functional diversity. This study investigated how shifts in soil microbial functional diversity affected by different revegetation types were operational indicators of soil quality