Summary• The shikimate pathway of plants mediates the conversion of primary carbon metabolites via chorismate into the three aromatic amino acids and to numerous secondary metabolites derived from them. However, the regulation of the shikimate pathway is still far from being understood. We hypothesized that 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) is a key enzyme regulating flux through the shikimate pathway.• To test this hypothesis, we expressed a mutant bacterial AroG gene encoding a feedbackinsensitive DAHPS in transgenic Arabidopsis plants. The plants were subjected to detailed analysis of primary metabolism, using GC-MS, as well as secondary metabolism, using LC-MS.• Our results exposed a major effect of bacterial AroG expression on the levels of shikimate intermediate metabolites, phenylalanine, tryptophan and broad classes of secondary metabolite, such as phenylpropanoids, glucosinolates, auxin and other hormone conjugates.• We propose that DAHPS is a key regulatory enzyme of the shikimate pathway. Moreover, our results shed light on additional potential metabolic bottlenecks bridging plant primary and secondary metabolism.