Animal societies of varying complexity have been the favoured testing ground for inclusive fitness theory, and there is now abundant evidence that kin selection has played a critical role in the evolution of cooperative behaviour. One of the key theoretical and empirical findings underlying this conclusion is that cooperative systems have a degree of kin structure, often the product of delayed dispersal, that facilitates interactions with relatives. However, recent population genetic studies have revealed that many non‐cooperative animals also have kin‐structured populations, providing more cryptic opportunities for kin selection to operate. In this article, I first review the evidence that kin structure is widespread among non‐cooperative vertebrates, and then consider the various contexts in which kin selection may occur in such taxa, including: leks, brood parasitism, crèches, breeding associations, territoriality and population dynamics, foraging and predator deterrence. I describe the evidence that kin‐selected benefits arise from interacting with kin in each of these contexts, notwithstanding the potential costs of kin competition and inbreeding. I conclude that as the tools required to determine population genetic structure are readily available, measurement of kin structure and the potential for kin selection on a routine basis is likely to reveal that this process has been an important driver of evolutionary adaptation in many non‐cooperative as well as cooperative species.