Urbanization and increased building density of cities are essential features of modern society. Not only does such a way of life bring economic benefits, but it also poses a new set of problems for city authorities. One of these problems is efficient traffic management and analysis. High population density leads to the tremendous number of personal cars, an increased number of freight vehicles for transportation of commodities and goods, tight pedestrian traffic. Transportation tasks can no longer be addressed by sub-optimal heuristics, based on the small amount of the manually gathered statistics. To make efficient decisions, forecast and assess their consequences, authorities require an automated system for analyzing traffic flow throughout the city. Nowadays, many cities have low-cost video surveillance systems, also known as closed-circuit television (CCTV). They exhibit rapid growth nowadays and usually include heterogeneous cameras with various resolution, mounting points, and frame rates [43]. CCTV works 24 h a day, 7 days a week and generates a massive amount of information, called Big Data. Among other applications, this data can serve as a foundation for the automated traffic surveillance system.