Correspondence: Paola Nisticò ( paola.nistico@ifo.gov.it)Targeting of immune checkpoint blockers (ICBs), such as cytotoxic T-lymphocyte antigen-4 and programmed-death 1/programmed-death ligand 1, has dramatically changed the landscape of cancer treatment. Seeing patients who were refractory to conventional therapy recover after immunotherapy, with high rates of objective durable responses and increased overall survival, has raised great enthusiasm in cancer care and research. However, to date, only a restricted portion of patients benefit from these therapies, due to natural and acquired resistance relying on the ever-evolving cross-talk between tumor and stromal cells. Here, we review the convergence of tumor-intrinsic and -extrinsic cues, both affecting tumor plasticity and tumor stroma leading to an immunosuppressive tumor microenvironment, which may account for the heterogeneous responses and resistance to ICB therapies. A deeper knowledge of the mechanisms and fingerprints involved in natural and acquired resistance is likely to bring clinical benefit to the majority of patients, offering important clues for overcoming drug resistance and boosting the effectiveness of treatment. We discuss the need to define tumor subtypes based on the tumor, immune and stromal gene signature and propose that the better we understand tumor mesenchymal traits, the more we will be able to identify predictive biomarkers of response to ICB treatments.