Dendritic cells (DC) have been showed to both produce and respond to chemokines. To understand how this may impact on DC function, we analyzed the kinetics of chemokine production and responsiveness during DC maturation. After stimulation with LPS, TNF-alpha or CD40 ligand, the inflammatory chemokines MIP-1alpha, MIP-1beta and IL-8 were produced rapidly and at high levels, but only for a few hours, while RANTES and MCP-1 were produced in a sustained fashion. The constitutive chemokines TARC, MDC and PARC were expressed in immature DC and were up-regulated following maturation, while ELC was produced only at late time points. Activated macrophages produced a similar spectrum of chemokines, but did not produce TARC and ELC. In maturing DC chemokine production had different impact on chemokine receptor function. While CCR1 and CCR5 were down-regulated by endogenous or exogenous chemokines, CCR7 levels gradually increased in maturing DC and showed a striking resistance to ligand-induced down-regulation, explaining how DC can sustain the response to SLC and ELC throughout the maturation process. The time-ordered production of inflammatory and constitutive chemokines provides DC with the capacity to self-regulate their migratory behavior as well as to recruit other cells for the afferent and efferent limb of the immune response.
When naive T lymphocytes are activated and differentiate into memory/effector cells, they down-regulate receptors for constitutive chemokines such as CXCR4 and CCR7 and acquire receptors for inflammatory chemokines such as CCR3, CCR5 and CXCR3, depending on the Th1/Th2 polarization. This switch in chemokine receptor usage leads to the acquisition of the capacity to migrate into inflamed tissues. Using RNase protection assays, staining with specific antibodies, and response to recombinant chemokines, we now show that following TCR stimulation, memory/effector T cells undergo a further and transient switch in receptor expression. CCR1, CCR2, CCR3, CCR5, CCR6 and CXCR3 are down-regulated within 6 h, while CCR7, CCR4, CCR8 and CXCR5 are up-regulated for 2 to 3 days. Upregulation of CCR7 following TCR stimulation was observed also among resting peripheral blood T cells and required neither co-stimulation nor exogenous IL-2. On the other hand IL-2 down-regulated CXCR5, up-regulated CCR8 and facilitated the recovery of CCR3 and CCR5. Upon TCR stimulation, Th1 and Th2 cells produced comparable sets of chemokines, including RANTES, macrophage inflammatory protein-1 g , I-309, IL-8 and macrophagederived chemokine, which may modulate surface chemokine receptors and contribute to cell recruitment at sites of antigenic recognition. Altogether these results show that following TCR stimulation effector/memory T cells transiently acquire responsiveness to constitutive chemokines. As a result, T cells that are activated in tissues may either recirculate to draining lymph nodes or migrate to nearby sites of organized ectopic lymphoid tissues.
Intestinal microbiota have been proposed to induce commensal-specific memory T cells that cross-react with tumor-associated antigens. We identified major histocompatibility complex (MHC) class I–binding epitopes in the tail length tape measure protein (TMP) of a prophage found in the genome of the bacteriophage Enterococcus hirae. Mice bearing E. hirae harboring this prophage mounted a TMP-specific H-2Kb–restricted CD8+ T lymphocyte response upon immunotherapy with cyclophosphamide or anti–PD-1 antibodies. Administration of bacterial strains engineered to express the TMP epitope improved immunotherapy in mice. In renal and lung cancer patients, the presence of the enterococcal prophage in stools and expression of a TMP–cross-reactive antigen by tumors correlated with long-term benefit of PD-1 blockade therapy. In melanoma patients, T cell clones recognizing naturally processed cancer antigens that are cross-reactive with microbial peptides were detected.
Vitiligo is a common skin disease characterized by the presence of well circumscribed, depigmented, milky white macules devoid of identifiable melanocytes. Although the detection of circulating anti-melanocytic antibodies and of infiltrating lymphocytes at the margin of lesions supports the view that vitiligo is an autoimmune disorder, its etiology remains unknown. In particular, it is still a matter of debate whether the primary pathogenic role is exerted by humoral or cellular abnormal immune responses. In this study, the presence of specific cytotoxic T lymphocyte responses against the melanocyte differentiation antigens Melan-A/MART1, tyrosinase, and gp100 in vitiligo patients have been investigated by the use of major histocompatibility complex/peptide tetramers. High frequencies of circulating melanocyte-specific CD8+ T cells were found in all vitiligo patients analyzed. These cells exerted anti-melanocytic cytotoxic activity in vitro and expressed skin-homing capacity. In one patient melanocyte-specific cells were characterized by an exceptionally high avidity for their peptide/major histocompatibility complex ligand. These findings strongly suggest a role for cellular immunity in the pathogenesis of vitiligo and impact on the common mechanisms of self tolerance.
Tumor-infiltrating immune cells play a key role against cancer. However, malignant cells are able to evade the immune response and establish a very complex balance in which different immune subtypes may drive tumor progression, metastatization and resistance to therapy. New immunotherapeutic approaches aim at restoring the natural balance and increase immune response against cancer by different mechanisms. The complexity of these interactions and the heterogeneity of immune cell subpopulations are a real challenge when trying to develop new immunotherapeutics and evaluate or predict their efficacy in vivo. To this purpose, molecular imaging can offer non-invasive diagnostic tools like radiopharmaceuticals, contrast agents or fluorescent dyes. These agents can be useful for preclinical and clinical purposes and can overcome [ 18 F]FDG limitations in discriminating between trueprogression and pseudo-progression. This review provides a comprehensive overview of immune cells involved in microenvironment, available immunotherapies and imaging agents to highlight the importance of new therapeutic biomarkers and their in vivo evaluation to improve the management of cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.