The aim of this study was to investigate the effect of ozone used as cavity disinfectant on dentin bond strength of resin-based restorative material.
Material and Method:The study included 36 adult 3rd molar teeth removed for surgical reasons. Each tooth was set in a cylindrical mould 2cm in diameter and 3cm high with the dentin surface parallel to the occlusal level and the roots remaining inside, with the help of autopolymerising acrylic. To obtain a standard smear layer, the teeth were filed. The teeth were randomly separated into 4 groups of 9. Ozone gas was applied to the dentin surfaces for 6 seconds (Prozone W&H, Bürmoos, Austria); Group 1 (single Bond Universal, Z250), Group 2 (ozone + single Bond Universal, Z250), Group 3 (Futurabond M, Grandio) Group 4 (Ozone + Futurabond M, Grandio). A 2mm resin layer was applied and polymerised with an LED light source for 20 secs (Light Emitting Diode-Elipar Freelight, 3M ESPE, Germany). The samples were applied with shear force of 1mm/min to breaking point.
Results:No statistically significant difference was determined between the shear bond strength values of all the groups (p>0.05). No statistically significant difference was determined between the shear bond strength values in the paired comparison of the groups (p>0.05). Adhesive type fractures were determined in the majority of all the groups.
Conclusion:The results of this study showed that ozone used for the purpose of disinfection had no negative effect on dentin shear bond strength.The aim of this in vitro study was to evaluate the effect of ozone gas on shear bond strength in self-etch adhesive systems.
Material and MethodsThe study included 36 adult 3rd molar teeth removed for various reasons. Soft tissue remnants were cleaned from the teeth and left in +4˚C distilled water. Each tooth was set in a cylindrical mould 2cm in diameter and 3cm high with the roots remaining inside with the help of autopolymerising acrylic. To obtain smooth dentin surfaces in the crown, enamel tissue was removed with a diamond burr under water cooling so as to be parallel to the occlusal surface. The exposed dentin surface was then filed in a single direction for 30 seconds under water using 200, 400 then 600 density abrasion strips. Following the abrasion process, a standard smear layer was obtained.The teeth were randomly separated into 4 groups of 9. Ozone gas produced from a Prozone device (W&H, Bürmoos, Austria) was applied to the dentin surfaces with a corona tip in disinfectant mode for 6 seconds from a distance of 1mm. The following materials prepared in accordance with the manufacturer's recommendations were applied to the samples in each group (n=9): Group 1 (single Bond Universal, Z250), Group 2 (Ozone + Single Bond Universal, Z250), Group 3 (Futurabond M, Grandio) Group 4 (Ozone + Futurabond M, Grandio) (Table 1). A 2mm resin layer was applied and polymerized with an LED light source for 20 secs (Light Emitting Diode-Elipar Freelight, 3M ESPE, Germany). After preparation of the samples, they were incubated for 24 ho...