The rise of social media has changed the nature of the fashion industry. Influence is no longer concentrated in the hands of an elite few: social networks have distributed power across a broader set of tastemakers. To understand this new landscape of influence, we created FITNet --- a network of the top 10k influencers of the larger Twitter fashion graph. To construct FITNet, we trained a content-based classifier to identify fashion-relevant Twitter accounts. Leveraging this classifier, we estimated the size of Twitter's fashion subgraph, snowball sampled more than 300k fashion-related accounts based on following relationships, and identified the top 10k influencers in the resulting subgraph. We use FITNet to perform a large-scale analysis of fashion influencers, and demonstrate how the network facilitates discovery, surfacing influencers relevant to specific fashion topics that may be of interest to brands, retailers, and media companies.