Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In many studies, it is of interest to predict the future trajectory of subjects based on their historical data, referred to as dynamic prediction. Mixed effects models have traditionally been used for dynamic prediction. However, the commonly used random intercept and slope model is often not sufficiently flexible for modeling subject‐specific trajectories. In addition, there may be useful exposures/predictors of interest that are measured concurrently with the outcome, complicating dynamic prediction. To address these problems, we propose a dynamic functional concurrent regression model to handle the case where both the functional response and the functional predictors are irregularly measured. Currently, such a model cannot be fit by existing software. We apply the model to dynamically predict children's length conditional on prior length, weight, and baseline covariates. Inference on model parameters and subject‐specific trajectories is conducted using the mixed effects representation of the proposed model. An extensive simulation study shows that the dynamic functional regression model provides more accurate estimation and inference than existing methods. Methods are supported by fast, flexible, open source software that uses heavily tested smoothing techniques.
Summary: Functional data methods are often applied to longitudinal data as they provide a more flexible way to capture dependence across repeated observations. However, there is no formal testing procedure to determine if functional methods are actually necessary. We propose a goodness-of-fit test for comparing parametric covariance functions against general nonparametric alternatives for both irregularly observed longitudinal data and densely observed functional data. We consider a smoothing-based test statistic and approximate its null distribution using a bootstrap procedure. We focus on testing a quadratic polynomial covariance induced by a linear mixed effects model and the method can be used to test any smooth parametric covariance function. Performance and versatility of the proposed test is illustrated through a simulation study and three data applications.
In the automotive industry, quality assessment of resistance spot welding (RSW) joints of metal sheets is typically based on costly and lengthy offline tests, which are unfeasible in the full‐scale production on a large scale. However, the massive industrial digitalization triggered by the Industry 4.0 framework makes online measurements of RSW process parameters available for every joint produced. Among these, the so‐called dynamic resistance curve (DRC) is recognized as the full technological signature of the spot welds. Motivated by this context, this article intends to show the potentiality and practical applicability of clustering methods to data represented by curves, and, in general, to functional data. In this way, the task of separating DRCs into homogeneous groups pertaining to spot welds with common mechanical and metallurgical properties can be performed without the need for arbitrary and problem‐specific feature extraction. We provide a hands‐on overview of the most promising functional clustering methods, and apply them to DRCs collected during RSW lab tests at Centro Ricerche Fiat. The identified groups of DRCs emerge to be strictly linked with the wear status of the electrodes, which, in turn, is conjectured to impact the RSW joint final quality. The analysis code, developed in the software environment R, accompanied by an essential tutorial and the ICOSAF project data set containing DRC measurements, are openly available online at https://github.com/unina-sfere/funclustRSW/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.