Real-time consistent plane detection (RCPD) from structured point cloud sequences facilitates various high-level computer vision and robotic tasks. However, it remains a challenge. Existing techniques for plane detection suffer from a long running time or the problem that the plane detection result is not precise. Meanwhile, labels of planes are not consistent over the whole image sequence due to plane loss in the detection stage. In order to resolve these issues, we propose a novel superpixel-based real-time plane detection approach, while keeping their consistencies over frames simultaneously. In summary, our method has the following key contributions: (i) a real-time plane detection algorithm to extract planes from raw structured three-dimensional (3D) point clouds collected by depth sensors; (ii) a superpixel-based segmentation method to make the detected plane exactly match its actual boundary; and, (iii) a robust strategy to recover the missing planes by utilizing the contextual correspondences information in adjacent frames. Extensive visual and numerical experiments demonstrate that our method outperforms state-of-the-art methods in terms of efficiency and accuracy.