This paper presents CAPE, a method to extract planes and cylinder segments from organized point clouds, which processes 640×480 depth images on a single CPU core at an average of 300 Hz, by operating on a grid of planar cells. While, compared to state-of-the-art plane extraction, the latency of CAPE is more consistent and 4-10 times faster, depending on the scene, we also demonstrate empirically that applying CAPE to visual odometry can improve trajectory estimation on scenes made of cylindrical surfaces (e.g. tunnels), whereas using a plane extraction approach that is not curve-aware deteriorates performance on these scenes.To use these geometric primitives in visual odometry, we propose extending a probabilistic RGB-D odometry framework based on points, lines and planes to cylinder primitives. Following this framework, CAPE runs on fused depth maps and the parameters of cylinders are modelled probabilistically to account for uncertainty and weight accordingly the pose optimization residuals.
This work proposes a robust visual odometry method for structured environments that combines point features with line and plane segments, extracted through an RGB-D camera. Noisy depth maps are processed by a probabilistic depth fusion framework based on Mixtures of Gaussians to denoise and derive the depth uncertainty, which is then propagated throughout the visual odometry pipeline. Probabilistic 3D plane and line fitting solutions are used to model the uncertainties of the feature parameters and pose is estimated by combining the three types of primitives based on their uncertainties.Performance evaluation on RGB-D sequences collected in this work and two public RGB-D datasets: TUM and ICL-NUIM show the benefit of using the proposed depth fusion framework and combining the three feature-types, particularly in scenes with low-textured surfaces, dynamic objects and missing depth measurements.
This work proposes a visual odometry method that combines points and plane primitives, extracted from a noisy depth camera. Depth measurement uncertainty is modelled and propagated through the extraction of geometric primitives to the frame-to-frame motion estimation, where pose is optimized by weighting the residuals of 3D point and planes matches, according to their uncertainties. Results on an RGB-D dataset show that the combination of points and planes, through the proposed method, is able to perform well in poorly textured environments, where point-based odometry is bound to fail.
On-orbit proximity operations in space rendezvous, docking and debris removal require precise and robust 6D pose estimation under a wide range of lighting conditions and against highly textured background, i.e., the Earth.This paper investigates leveraging deep learning and photorealistic rendering for monocular pose estimation of known uncooperative spacecrafts. We first present a simulator built on Unreal Engine 4, named URSO, to generate labeled images of spacecrafts orbiting the Earth, which can be used to train and evaluate neural networks.Secondly, we propose a deep learning framework for pose estimation based on orientation soft classification, which allows modelling orientation ambiguity as a mixture of Gaussians. This framework was evaluated both on URSO datasets and the ESA pose estimation challenge. In this competition, our best model achieved 3 rd place on the synthetic test set and 2 nd place on the real test set. Moreover, our results show the impact of several architectural and training aspects, and we demonstrate qualitatively how models learned on URSO datasets can perform on real images from space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.