2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 2020
DOI: 10.1109/cvprw50498.2020.00249
|View full text |Cite
|
Sign up to set email alerts
|

Fast Deep Multi-patch Hierarchical Network for Nonhomogeneous Image Dehazing

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
36
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 58 publications
(37 citation statements)
references
References 12 publications
1
36
0
Order By: Relevance
“…Acronymum Code Availability Fattal [5] FAT YES Kratz et al [15] KRATZ YES He et al [4] DCP/DCP_F YES Tarrel et al [8] TFV YES Meng et al [11] BCCR YES Sulami et al [12] ATML YES Choi [21] DEF YES Zu et al [13] CAP YES Bermann et al [14] NLD YES Chen et al [10] GRM YES Galdran [17] AMEF YES Fattal [6] -NO Tan [7] -NO Ancuti et al [20] -NO Wu et al [47] -NO Zheng et al [18] -NO Zhu et al [19] -NO Ren et al [22] M_NN YES Cai et al [23] DE_Z YES Li et al [26] AOD YES Engin et al [29] CY_D YES Qin et al [36] FFA_Net YES Sourya et al [39] DMPH YES Shao et al [48] -NO Ren et al [31] -NO Dong et al [37] -NO Zhang et al [24] -NO Dong et al [38] -NO Yang et al [30] -NO Swami et al [28] -NO Dudhane et al [32] -NO Ren et al [33] -NO Li et al [34] -NO Li et al [35] -NO Pang et al [25] -NO Shen et al [40] -NO…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…Acronymum Code Availability Fattal [5] FAT YES Kratz et al [15] KRATZ YES He et al [4] DCP/DCP_F YES Tarrel et al [8] TFV YES Meng et al [11] BCCR YES Sulami et al [12] ATML YES Choi [21] DEF YES Zu et al [13] CAP YES Bermann et al [14] NLD YES Chen et al [10] GRM YES Galdran [17] AMEF YES Fattal [6] -NO Tan [7] -NO Ancuti et al [20] -NO Wu et al [47] -NO Zheng et al [18] -NO Zhu et al [19] -NO Ren et al [22] M_NN YES Cai et al [23] DE_Z YES Li et al [26] AOD YES Engin et al [29] CY_D YES Qin et al [36] FFA_Net YES Sourya et al [39] DMPH YES Shao et al [48] -NO Ren et al [31] -NO Dong et al [37] -NO Zhang et al [24] -NO Dong et al [38] -NO Yang et al [30] -NO Swami et al [28] -NO Dudhane et al [32] -NO Ren et al [33] -NO Li et al [34] -NO Li et al [35] -NO Pang et al [25] -NO Shen et al [40] -NO…”
Section: Methodsmentioning
confidence: 99%
“…Content may change prior to final publication. (a) M_NN [22] (b) AOD [26] (c) DE_Z [23] (d) CY_D [29] (e) FFA_Net [36] (f) DMPH [39] This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ This article has been accepted for publication in a future issue of this journal, but has not been fully edited.…”
mentioning
confidence: 99%
“…According to the research in [22], the images I − A/t k + A in equation ( 13) and I − A/J k − A + αt 0 /1 + α in equation ( 14) can both be considered as the denoising tasks whose noise levels are ��� � λ 1 /2 and ��������� � λ 2 /2(1 + α) , respectively. erefore, any image denoiser can be solved by equations (18) and (19).…”
Section: Estimation Of Transmission Tmentioning
confidence: 99%
“…Chen et al [17] proposed a gated context aggregation network for image dehazing and deraining and applied the smoothed dilated convolution to avoid the gridding artifacts. Most CNN-based methods leverage haze-free images to synthesize hazy datasets [17,18]. However, some researchers thought that it could not represent the data distribution of real hazy images correctly, and some deficiencies existed in those models trained with synthesized datasets.…”
Section: Introductionmentioning
confidence: 99%
“…Their method was competitive on the restoration of image detail and color fidelity. Das and Dutta 23 proposed a fast deep multi‐patch hierarchical network to restore nonhomogeneous hazed images by aggregating features of multiple image patches from different spatial sections. Ancuti et al 24 focused on the dataset of images with nonhomogeneous hazy and the solutions in image dehazing, and they found that all methods utilized a CNN architecture are based on the skeleton of a U‐Net.…”
Section: Introductionmentioning
confidence: 99%