An accurate and efficient eye detector is essential for many computer vision applications. In this paper, we present an efficient method to evaluate the eye location from facial images. First, a group of candidate regions with regional extreme points is quickly proposed; then, a set of convolution neural networks (CNNs) is adopted to determine the most likely eye region and classify the region as left or right eye; finally, the center of the eye is located with other CNNs. In the experiments using GI4E, BioID, and our datasets, our method attained a detection accuracy which is comparable to existing state-of-the-art methods; meanwhile, our method was faster and adaptable to variations of the images, including external light changes, facial occlusion, and changes in image modality.