To improve the temporal resolution in an optical delay system that uses a conventional mechanical delay stage, we integrate an in-line liquid crystal (LC) wave retarder. Previous implementations of LC optical delay methods are limited due to the small temporal window provided. Using a conventional mechanical delay stage system in series with the LC wave retarder, the temporal window is lengthened. Additionally, the limitation on temporal resolution resulting from the minimum optical path alteration (resolution of 400 nm) of the conventionally used mechanical delay stage is reduced via the in-line wave retarder (resolution of 50 nm). Interferometric autocorrelation measurements are conducted at multiple laser emission frequencies (349, 357, 375, 393, and 405 THz) using the in-line LC and conventional mechanical delay stage systems. The in-line LC system is compared to the conventional mechanical delay stage system to determine the improvements in temporal resolution relating to maximum resolvable frequency. This work demonstrates that the integration of the in-line LC system can extend the maximum resolvable frequency from 375 to 3000 THz. The in-line LC system is also applied for measurement of terahertz pulses.