Every mobile robot mission starts with the robot being moved to the task site. From there, the robot executes its tasks. A control system is required to move the mobile robot's actuator (which may be in the shape of wheels or legs) and comprehend the environment around the robot to perform these movements (perception). This research aims to develop a technique to control a robot’s movement while detecting obstacles and distances toward an object. The robot is equipped with LIDAR and a camera to perform these tasks. The control is divided into two major parts, low-level and high-level controller. As part of a low-level controller robot, the Model Predictive Control (MPC) method is proposed to help with the control of the wheel while the Artificial Neural Network (ANN) approach to use in this study to identify obstacles and the Convolutional Neural Network (CNN) method for detecting objects, both ANN and CNN as a control for high-level part of the robot. The results of this study can prove that CNN can help detect existing objects with a value of 45% for detecting some objects. The obtained result from the MPC method, which has been combined with an ANN as an obstacle detector, is that the smaller the horizon value, the shorter the time needed to reach the desired coordinates with the result being 45 seconds.