Optimal allocation of distributed generations (DGs) is vital to the proper operation of the distribution systems, which leads to power loss minimization and acceptable voltage regulation. In this paper, an Enhanced Artificial Ecosystem-based Optimization (EAEO) algorithm is proposed and used to solve the optimization problem of DG allocations to minimize the power loss in distribution systems. In the suggested algorithm, the search space is reduced using operator G and sine-cosine function. The G-operator affects the balance between explorative and exploitative phases. At the same time, it gradually decreases during the iterative process in order to converge to the optimal global solutions. On the other hand, the sine-cosine function creates different and random solutions. The EAEO algorithm is applied for solving the standard 33bus 69-bus, and 119-bus distribution systems with the aim of minimizing the total power losses. Multiple DG units operating at various power factors, including unity-, fixed-, and optimal-power factors, are considered. Both single and multiple objectives are considered to minimize the total voltage deviation (TVD), maximize the system stability, and reduce the total power losses. The obtained results are compared with those obtained by the AEO and other algorithms. The results demonstrate a significant reduction of total power losses and improvement of the voltage profile of the network, especially for the DGs operating at their optimal power factors. Comparisons show the dominance of the proposed EAEO algorithm against other analytical, metaheuristic, or hybrid algorithms. Moreover, the EAEO outperforms the original AEO algorithm with a faster convergence speed and better system performance.