In this paper, improved single-and multi-objective Harris Hawks Optimization algorithms, called IHHO and MOIHHO, respectively are proposed and applied for determining the optimal placement of distribution generation (DG) in the radial distribution systems. Harris Hawks optimizer (HHO) is a new inspired meta-heuristic optimization technique that is mainly based on the intelligence behavior of the Harris hawks in chasing prey. The IHHO and MOIHHO are applied for determining the optimal size and location of DG at different operating power factors (p.f) with the aim of minimizing the total active power loss, reducing the voltage deviation (VD), and increasing the voltage stability index (VSI) considering the operational constraints of distribution system. In IHHO, the performance of the conventional HHO algorithm is improved using the rabbit location instead of the random location. In MOIHHO, grey relation analysis is applied for identifying the best compromise solution among the non-dominance Pareto solutions. To verify the effectiveness of the proposed algorithms, IEEE 33-bus and IEEE 69-bus radial distribution systems are used, and the obtained results are compared with those obtained by other optimization techniques. The results prove the efficiency of the proposed algorithms in terms of best solutions obtained so far for the single-and multi-objective scenarios. INDEX TERMS Harris hawks optimizer, single-and multi-objective optimization, DG placement, distribution systems, power loss reduction, voltage deviation, voltage stability index. I. INTRODUCTION A. MOTIVATION AND INCITEMENT ALI SELIM received the B.Sc. and M.Sc. degrees in electrical engineering from Aswan University, Aswan, Egypt, in 2010 and 2016, respectively. He is currently pursuing the Ph.D. degree with the Department of Electrical Engineering, University of Jaén, Spain. He is also an Assistant Lecturer with the Electrical Engineering Department, Aswan University. His research interests include mathematical optimization, planning, and control of power systems, renewable energies, energy storage, and smart grids.
In this paper, an efficient optimization technique called Chaotic Harris Hawks optimization (CHHO) is proposed and applied for estimating the accurate operating parameters of proton exchange membrane fuel cell (PEMFC), which simulate and mimic its electrical performance. The conventional Harris Hawks optimization (HHO) is a recent optimization technique that is based on the hunting approach of Harris hawks. In this proposed optimization technique, ten chaotic functions are applied for tackling with the studied optimization problem. The CHHO is proposed to enhance the search capability of conventional HHO and avoid its trapping into local optima. The sum of squared errors (SSE) between the experimentally measured output voltage and the corresponding simulated ones is adopted as the objective function. The developed CHHO technique is tested on four various commercial PEMFC stacks to assess and validate its effectiveness compared with other well-known optimization techniques. A statistical study is performed to appreciate the stability and reliability of the proposed CHHO technique. However, the results show the effectiveness and superiority of proposed CHHO compared with the conventional HHO and other competitive metaheuristic optimization algorithms under the same study cases.INDEX TERMS Proton exchange membrane fuel cell, parameter estimation, Harris Hawks optimization, sum of squared errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.