After intravenous or oral administration of 10 mg/kg itraconazole to rats with streptozotocin-induced diabetes mellitus and to control rats, the total area under the plasma concentration-time curve from time 0 to 24 h (AUC 0-24 ) for itraconazole and that for its metabolite, 7-hydroxyitraconazole, were similar between the two groups of rats. This may be explained by the comparable hepatic and intestinal intrinsic clearance rates for the disappearance of itraconazole and the formation of 7-hydroxyitraconazole in both groups of rats.Itraconazole is a prototype triazole antifungal agent. Superficial fungal infections of the feet among elderly patients with diabetes mellitus are common, and itraconazole has been shown to have acceptable cure rates (12). In humans, hepatic cytochrome P450 3A4 (CYP3A4) appears to be involved in the metabolism of itraconazole to form several metabolites, including 7-hydroxyitraconazole (9). No in vivo studies of itraconazole metabolism in rats have been reported. Hepatic CYP3A1 (5) and CYP3A2 (10) proteins and/or mRNA levels have been shown to increase in male Sprague-Dawley rats with diabetes mellitus induced by streptozotocin (DMIS rats), but there are no reports on the intestinal CYP3A subfamily in DMIS rats. Furthermore, the pharmacokinetics of itraconazole and 7-hydroxyitraconazole may differ between intravenously and orally administered itraconazole in DMIS rats.In the present study, itraconazole metabolism was examined in DMIS rats as an animal model of diabetes mellitus. We report the pharmacokinetics of itraconazole and 7-hydroxyitraconazole after intravenous or oral administration in DMIS rats compared with those in control rats. Our results show that hepatic CYP3A1/2 is responsible for the metabolism of itraconazole and the formation of 7-hydroxyitraconazole in rats and that the expression of the intestinal CYP3A1/2 protein was not altered in DMIS rats compared with that in control rats, based on Western blot analysis.Overall, the methods used in this study were similar to those described in previous reports. The chemicals used in addition to itraconazole, the methods of housing and handling the male Sprague-Dawley rats (7 to 9 weeks old, weighing 230 to 280 g), the intravenous and oral administration of itraconazole, the measurement of plasma protein binding values of itraconazole by equilibrium dialysis, and the high-performance liquid chromatographic analysis of itraconazole and 7-hydroxyitraconazole were all performed as described previously (1, 11