Salvage logging operations often occur after large disturbances and usually leave behind a substantial quantity of residues, which is fundamental for maintaining soil fertility and facilitating ecosystem dynamics. This study aims to estimate the amount of logging residues following salvage operations categorized by two wood harvesting systems: Cut-To-Length (CTL) and Full-Tree System (FT). Logging residues in the harvested areas were sampled using linear transects and the data collected were divided into classes based on diameter. The quantity of residues was estimated using the Brown method for Fine Wood Debris (FWD) and the Van Wagner method for Coarse Wood Debris (CWD). Furthermore, the carbon and nutrient content associated with logging residues were also determined, considering their interaction with the soil organic layer. Overall, a higher quantity of FWD was detected in the sites cleared with the FT system and a higher quantity of CWD in the sites logged with the CTL system. Differences could be observed for all three years and systems considered, but only the third year reported statistically significant results (p<0.01). The soil and residue chemical analysis for carbon and nutrient contents revealed a high amount of carbon stored in a potential layer of 10 cm of soil (up to 85 Mg·C·ha-1), while only up to 15 Mg·C·ha-1 for the woody material.