An experimental and numerical investigation on the mechanical response of a lined pipe (compound pipe) under a dynamic impact is presented. The influence of the impact energy has been studied in terms of the depth of the dent formed, and of the strains and residual stresses. To this end, a three-dimensional explicit dynamic non-linear finite element model has been developed and successfully validated against the results of impact-test experiments conducted on pipes made of AISI 10305 steel, with and without the AISI304 stainless steel liner. The validation was made by comparing numerically computed strains with those measured by strain gauges, as well as in terms of permanent deformation. The model is then utilized to evaluate the residual stresses, the amount of energy dissipation and the velocity of impact process as a function of different pipes (i.e. with or without liner) and of the free drop heights.