The relationship between surface cracking at grain boundaries and the grain boundary nature in helium implanted 316L austenitic stainless steel was investigated by in-situ annealing in a high-voltage electron microscope, and by SEM and TEM observations. The nucleation and growth of helium bubbles at a random grain boundary was observed during annealing up to 973 K. After annealing, surface cracking was observed at the random grain boundaries and some coincidence site lattice (CSL) boundaries because of the formation and rupture of the helium bubbles at these grain boundaries. At the faceted CSL boundaries, surface cracking occurred only on one boundary facet plane. This indicates that the twin boundary and pure tilt Σ9 CSL boundary show the highest resistance to cracking because of their low boundary energies.