To more accurately predict the fatigue life of components under the action of random loads, it is necessary to explore the influence of the interaction between the load sequence and the load on the life prediction. Based on the Manson-Halford method and Corten-Dolan model, this paper establishes a fatigue cumulative damage model that takes into account both the load order and the interaction between loads, and also takes into account the loads near the fatigue limit. The fatigue life of mechanical parts under random load can be calculated through this model, which provides a theoretical basis for life prediction under random load spectrum. The fatigue life of mechanical parts under random load can be calculated through this model, which provides a theoretical basis for life prediction under random load spectrum. Comparing the calculation results of the proposed model with the results of Palmgren Miner, Manson-Halford method, and Corten-Dolan model, it is found that the fatigue damage model established can reasonably predict the fatigue life of parts. Comparison and verification of examples further prove the accuracy and reliability of the proposed model.