The methods developed by the world community to date to withstand strong natural and induced destructive earthquakes do not effectively reduce material losses and the number of victims. The authors propose for discussion an integrated approach to solving the problem of ensuring seismic safety, based on the use of new important information about the geological conditions for earthquake generation. This involved the use of results of numerical and physical modeling, as well as physical full-scale experiments in the natural fault areas. The paper analyzes the petrophysical conditions of deep-seated frictional processes in coseismic faults, revealed through detailed studies of the fragments of paleoearthquake centers that became accessible after their exhumation from seismic-focal depths of the Earth’s crust. The collected information allowed the authors to clarify with a high degree of certainty the origin and occurrence of seismic motions. This paper presents briefly the results of the medium-term forecast of earthquakes with M≥5.0 as applied to the seismodynamic regime of the Baikal rift zone. The forecast emphasizes the detection of places for 1–11-year earthquake generation cycles.A comprehensive analysis of the collected information made it possible to substantiate the conclusion about an opportunity to prevent earthquake damage by using hydrodynamic damping of seismically hazardous fault segments. In the last section, consideration is being given to one of the most promising methods of such man-made impacts, which uses modern technological advances in drilling deep multil-branch and directionally inclined wells with horizontal deviation. The paper discusses the techniques that make it possible to prevent episodes of unexpected reactivation of fault segments in the form of excitation of earthquakes with M≥6.0. Attention is drawn to conducting tests at selected sites in order to improve the technology as part of the approach to earthquake damping.