A stick-slip piezo-driven linear actuator to output bidirectional motion is proposed. The actuator has a compact structure, with a length, width, and height of approximately 80, 80, and 20 mm in the X, Y, and Z directions, respectively. A prototype of the actuator was designed, fabricated, and analysed. An experimental system was established to evaluate the output performances of the actuator, including the stepping displacement and the ratio of backward motion. The experimental results indicated that the maximum speeds of the forward and reverse motions were 2.01 and 2.34 mm s −1 , respectively. The maximum vertical load was 380 g. The stepping displacement was 0.89 μm, with a control voltage of 20 V and a control-signal frequency of 220 Hz. When the driving frequency was >220 Hz, the actuator eliminated the backward motion under no load, and the step efficiency of the actuator reached 100%. The optimal working conditions of the actuator were a driving frequency of 220-300 Hz and a constant driving voltage of 100 V.