In Manufacturing Engineering there is a need to be able to model the behavior of technological variables versus input parameters in order to predict their behavior in advance, so that it is possible to determine the levels of variation that lead to optimal values of the response variables to be obtained. In recent years, it has been a common practice to rely on regression techniques to carry out the above-mentioned task. However, such models are sometimes not accurate enough to predict the behavior of these response variables, especially when they have significant non-linearities. In this present study a comparative analysis between the precision of different techniques based on conventional regression and soft computing is initially carried out. Specifically, regression techniques, based on the response surface model, as well as the use of artificial neural networks and fuzzy inference systems along with adaptive neuro-fuzzy inference systems will be employed to predict the behavior of the aforementioned technological variables. It will be shown that when there are difficulties in predicting the response parameters by using regression models, soft computing models are highly effective, being much more efficient than conventional regression models. In addition, a new method is proposed in this study that consists of using an iterative process to obtain a fuzzy inference system from a design of experiments and then using an adaptive neuro-fuzzy inference system for tuning the constants of the membership functions. As will be shown, with this method it is possible to obtain improved results in the validation metrics. The means of selecting the membership functions to develop this model from the design of experiments is discussed in this present study in order to obtain an initial solution, which will be then tuned by using an adaptive neuro-fuzzy inference system, to predict the behavior of the response variables. Moreover, the obtained results will also be compared.