The effects of acoustic frequency (f)/0–400 Hz and amplitude (A)/0–1400 Pa on nitrogen oxides (NOx) emissions of a partially premixed flame were investigated experimentally. The mechanism of NOx emissions was analyzed by the evolution of the vortex, which was shown by particle image velocimetry (PIV). From the relationship of NOx emission index (EINOx) and acoustic parameters, it was concluded that a critical frequency (fc) from 170 Hz to 190 Hz appeared. When the frequency was less than fc, EINOx decreased linearly with an increase in amplitude. The flame length became shorter, which led to a decrease in the global residence time, and hence, a reduction in reaction time for NOx. However, a direct proportional relationship between EINOx and amplitude was not found when the frequency was larger than fc. Based on PIV particle scattering images, with an increase of the acoustic frequency, the effects of the acoustic field on the flame base became less significant, but the flame length and reaction space of NOx were gradually increased.