2016 IEEE 6th International Conference on Advanced Computing (IACC) 2016
DOI: 10.1109/iacc.2016.40
|View full text |Cite
|
Sign up to set email alerts
|

Feature Extraction of Time Series Data for Wind Speed Power Generation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2018
2018
2021
2021

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 11 publications
0
2
0
1
Order By: Relevance
“…These features include the four first moments, the Root Mean Square (RMS), the non-dimensional parameters in time-domain (shape and crest factors), and the sample histogram. The time-domain features are expressed in equation (4) 17,34,35…”
Section: Data Acquisitionmentioning
confidence: 99%
“…These features include the four first moments, the Root Mean Square (RMS), the non-dimensional parameters in time-domain (shape and crest factors), and the sample histogram. The time-domain features are expressed in equation (4) 17,34,35…”
Section: Data Acquisitionmentioning
confidence: 99%
“…Erdem ve Shi [13] rüzgâr hızı ve yön tahmininde ARIMA tabanlı metotlar geliştirmişlerdir. Narayana ve arkadaşları [3] rüzgâr tribünlerinin ileriye yönelik tahmin metotları ile kontrolü üzerine çalışmalar yaparken, Khanna ve arkadaşları [7] rüzgâr gücü üretiminde zaman serisi özelliklerinin belirlenmesi üzerine çalışmalar yapmışlardır. Khandelwal ve arkadaşları [14] ayrık dalgacık dönüşümü ile ARIMA ve yapay sinir ağı modelini birleştiren hibrid bir çalışma ile zaman serisi tahmini yapan bir model ortaya koymuşlardır.…”
Section: Gi̇ri̇ş (Introduction)unclassified
“…Khanna et.al. studied the determination of time series properties in wind power generation [9]. For wind turbines in Korea, wind energy was estimated with ANFIS, Sequential Minimal Optimization (SMO), K-Nearest Neighbor (KNN) and Artificial Neural Networks (ANN) models using hourly and daily wind speed, wind direction, temperature and time intervals.…”
Section: Introductionmentioning
confidence: 99%