2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2018
DOI: 10.1109/icassp.2018.8461674
|View full text |Cite
|
Sign up to set email alerts
|

Feature LMS Algorithms

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
10
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
4
2

Relationship

2
4

Authors

Journals

citations
Cited by 14 publications
(11 citation statements)
references
References 11 publications
0
10
0
1
Order By: Relevance
“…Results: In the following experiments, the unknown lowpass transfer function of the system identification configuration has 20 coefficients, which are defined as [3]…”
Section: Remarkmentioning
confidence: 99%
See 3 more Smart Citations
“…Results: In the following experiments, the unknown lowpass transfer function of the system identification configuration has 20 coefficients, which are defined as [3]…”
Section: Remarkmentioning
confidence: 99%
“…Other sparsity types can be obtained from known relationships among the coefficients. It has been recently shown that prior awareness about such hidden sparsities can be exploited by using feature matrices FRN1×N [3]. These matrices can be designed such as to penalise non‐sparse linear combinations of the unknown parameters [4], by employing, for example, prior knowledge about frequency response characteristics of the unknown systems.…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations
“…A primeira corresponde à família de algoritmos proportionate, em que os coeficientes do filtro são atualizados de maneira proporcional Gabriel S. Chaves, Markus V. S. Lima, Universidade Federal do Rio de Janeiro (UFRJ) / Escola Politécnica (Poli) / Programa de Engenharia Elétrica (PEE) / Sinais, Multimídia e Telecomunicações (SMT), Rio de Janeiro -RJ, Brasil, E-mails: {gabriel.chaves, markus.lima}@smt.ufrj.br. Tadeu N. Ferreira, Universidade Federal Fluminense (UFF) / Escola de Engenharia / Niterói -RJ, Brasil, E-mail: tadeu_ferreira@id.uff.br às suas magnitudes [4]- [7], enquanto a segunda corresponde a algoritmos que usam uma regularização promovedora de esparsidade nos coeficientes, tal qual a norma 1 ou uma aproximação da norma 0 [8]- [11].…”
Section: Introductionunclassified