The feature selection problem is a significant challenge in pattern recognition, especially for classification tasks. The quality of the selected features plays a critical role in building effective models, and poor-quality data can make this process more difficult. This work explores the use of association analysis in data mining to select meaningful features, addressing the issue of duplicated information in the selected features. A novel feature selection technique for text classification is proposed, based on frequent and correlated items. This method considers both relevance and feature interactions, using association as a metric to evaluate the relationship between the target and features. The technique was tested using the SMS spam collecting dataset from the UCI machine learning repository and compared with well-known feature selection methods. The results showed that the proposed technique effectively reduced redundant information while achieving high accuracy (95.155%) using only 6% of the features.