Datasets with heterogeneous features can affect feature selection results that are not appropriate because it is difficult to evaluate heterogeneous features concurrently. Feature transformation (FT) is another way to handle heterogeneous features subset selection. The results of transformation from non-numerical into numerical features may produce redundancy to the original numerical features. In this paper, we propose a method to select feature subset based on mutual information (MI) for classifying heterogeneous features. We use unsupervised feature transformation (UFT) methods and joint mutual information maximation (JMIM) methods. UFT methods is used to transform nonnumerical features into numerical features. JMIM methods is used to select feature subset with a consideration of the class label. The transformed and the original features are combined entirely, then determine features subset by using JMIM methods, and classify them using support vector machine (SVM) algorithm. The classification accuracy are measured for any number of selected feature subset and compared between UFT-JMIM methods and Dummy-JMIM methods. The average classification accuracy for all experiments in this study that can be achieved by UFT-JMIM methods is about 84.47% and Dummy-JMIM methods is about 84.24%. This result shows that UFT-JMIM methods can minimize information loss between transformed and original features, and select feature subset to avoid redundant and irrelevant features. Keywords: Feature selection, Heterogeneous features, Joint mutual information maximation, Support vector machine, Unsupervised feature transformation AbstrakDataset dengan fitur heterogen dapat mempengaruhi hasil seleksi fitur yang tidak tepat karena sulit untuk mengevaluasi fitur heterogen secara bersamaan. Transformasi fitur adalah cara untuk mengatasi seleksi subset fitur yang heterogen. Hasil transformasi fitur non-numerik menjadi numerik mungkin menghasilkan redundansi terhadap fitur numerik original. Dalam tulisan ini, peneliti mengusulkan sebuah metode untuk seleksi subset fitur berdasarkan mutual information (MI) untuk klasifikasi fitur heterogen. Peneliti menggunakan metode unsupervised feature transformation (UFT) dan metode joint mutual information maximation (JMIM). Metode UFT digunakan untuk transformasi fitur nonnumerik menjadi fitur numerik. Metode JMIM digunakan untuk seleksi subset fitur dengan pertimbangan label kelas. Fitur hasil transformasi dan fitur original disatukan seluruhnya, kemudian menentukan subset fitur menggunakan metode JMIM, dan melakukan klasifikasi terhadap subset fitur tersebut menggunakan algoritma support vector machine (SVM). Akurasi klasifikasi diukur untuk sejumlah subset fitur terpilih dan dibandingkan antara metode UFT-JMIM dan Dummy-JMIM. Akurasi klasifikasi rata-rata dari keseluruhan percobaan yang dapat dicapai oleh metode UFT-JMIM sekitar 84.47% dan metode Dummy-JMIM sekitar 84.24%. Hasil ini menunjukkan bahwa metode UFT-JMIM dapat meminimalkan informasi yang hilang diantara fitur hasil transforma...
Perkembangan Teknologi Informasi telah mendorong kemajuan di berbagai bidang. Dalam bidang pendidikan, contohnya penggunaan e-learningyang merupakan hasil integrasi teknologi dan pendidikan yang muncul sebagai media untuk pembelajaran yang menggunakan teknologi internet. Kebutuhan e-learning yang tak terbantahkan dalam pendidikan menyebabkan pertumbuhan yang besar dalam hal jumlah materi e-learning yang di-share dan sistem e-learning yang menawarkan berbagai jenis layanan. Ada 2 tipe e-learning, yaitu unstructured e-learning dan structured e-learning. Masing-masing tipe tersebut dibedakan menjadi dua bentuk berdasarkan faktor-faktor evaluasi kesuksesan suatu e-learning. Pesatnya penggunaan e-learning sebagai media pembelajaran, membuat kualitas sistem e-learning menjadi perhatian besar untuk memaksimalkan efektivitas sistem e-learning. Evaluasi kualitas sistem e-learning menjadi sangat penting dilakukan untuk memastikan dan mengetahui tingkat keberhasilan penyampaian materi melalui e-learning kepada para peserta didik, penggunaan e-learning yang efektif, dan dampak positif e-learning untuk peserta didik. Dua metode pembelajaran berbasis e-learning yang dilakukan, yaitu structured learning dengan user interface baik dan unstructured learning dengan user interface baik. Evaluasi dilakukan terhadap penyajian mata kuliah dengan dua metode pembelajaran berdasarkan hasil tes pemahaman materi. Hal ini dilakukan untuk melihat bagaimana pemahaman mahasiswa terhadap materi mata kuliah yang dibedakan atas dua kategori penyajian. Serta melakukan evaluasi kegunaan (usability) produk LMS UNJA. Diperoleh nilai rata-rata test akhir 78,15 untuk metode structured learning dan 69,19 untuk metode unstructured learning. Hasil evaluasi usability produk LMS UNJA, menyatakan secara keseluruhan, produk LMS UNJA secara usability sudah dapat diterima atau sudah layak, sesuai dengan rata-rata nilai usability produk yang diperoleh yaitu, 73,46.
In general, to make decisions in the discipline of information systems are divided into two, namely Decision Support System (DSS) and Data Informed Decision Making (DIDM). DIDM is a data-driven decision-making process taking into account previous experience, user research, and other important information. Many applications are categorized as data-informed for universities, one of which is a portal that contains data or information about various aspects of a university. There are not many known factors that influence leaders to use informed data as a tool for making decisions. This study applies the UTAUT (Unified Theory of Acceptance and Use of Technology) model by adding a leadership style variable as a moderating variable. Hypothesis testing using the bootstrapping technique in this study involved a number of samples (N) of 300, testing for the two-tailed hypothesis, using a significance level of 5%. Based on the test results revealed only facilitating conditions that affect use behavior. Meanwhile, the variables of performance expectancy, effort expectancy, and social influence have no effect on behavioral intention to use the application. In addition, it was also found that the moderator variable of leadership style did not affect the relationship between performance expectancy, effort expectancy, social influence, and facilitating conditions with the intention and actual use of leaders in data informed applications to make decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.