The discovery and development of new medicines classically involves a linear process of basic biomedical research to uncover potential targets for drug action, followed by applied, or translational, research to identify candidate products and establish their effectiveness and safety. This Working Paper describes the public sector contribution to that process by tracing funding from the National Institutes of Health (NIH) related to published research on each of the 356 new drugs approved by the U.S. Food and Drug Administration from 2010-2019 as well as research on their 219 biological targets. Specifically, we describe the timelines of clinical development for these products and proxy measures of their importance, including designations as first-in- class or expedited approvals. We model the maturation of basic research on the biological targets to determine the initiation and established points of this research and demonstrate that none of these products were approved before this enabling research passed the established point. This body of essential research comprised 2 million publications, of which 424 thousand were supported by 515 thousand Funding Years of NIH Project support totaling $195 billion. Research on the 356 drugs comprised 244 thousand publications, of which 39 thousand were supported by 64 thousand Funding Years of NIH Project support totaling $36 billion. Overall, NIH funding contributed to research associated with every new drug approved from 2010-2019, totaling $230 billion. This funding supported investigator-initiated Research Projects, Cooperative Agreements for government-led research on topics of particular importance, as well as Research Program Projects and Centers and training to support the research infrastructure. This NIH funding also produced 22 thousand patents, which provided marketing exclusivity for 27 (8.6%) of the drugs approved 2010-2019. These data demonstrate the essential role of public sector-funded basic research in drug discovery and development, as well as the scale and character of this funding. It also demonstrates the limited mechanisms available for recognizing the value created by these early investments and ensuring appropriate public returns. This analysis demonstrates the importance of sustained public investment in basic biomedical science as well as the need for policy innovations that fully realize the value of public sector investments in pharmaceutical innovation that ensure that these investments yield meaningful improvements in health.