Recent leading approaches to semantic segmentation rely on deep convolutional networks trained with humanannotated, pixel-level segmentation masks. Such pixelaccurate supervision demands expensive labeling effort and limits the performance of deep networks that usually benefit from more training data. In this paper, we propose a method that achieves competitive accuracy but only requires easily obtained bounding box annotations. The basic idea is to iterate between automatically generating region proposals and training convolutional networks. These two steps gradually recover segmentation masks for improving the networks, and vise versa. Our method, called "BoxSup", produces competitive results (e.g., 62.0% mAP for validation) supervised by boxes only, on par with strong baselines (e.g., 63.8% mAP) fully supervised by masks under the same setting. By leveraging a large amount of bounding boxes, BoxSup further unleashes the power of deep convolutional networks and yields state-of-the-art results on PAS-CAL VOC 2012 and PASCAL-CONTEXT [24].