Abstract:Object segmentation on remotely-sensed images: aerial (or very high resolution, VHS) images and satellite (or high resolution, HR) images, has been applied to many application domains, especially road extraction in which the segmented objects are served as a mandatory layer in geospatial databases. Several attempts in applying deep convolutional neural network (DCNN) to extract roads from remote sensing images have been made; however, the accuracy is still limited. In this paper, we present an enhanced DCNN framework specifically tailored for road extraction on remote sensing images by applying landscape metrics (LMs) and conditional random fields (CRFs). To improve DCNN, a modern activation function, called exponential linear unit (ELU), is employed in our network resulting in a higher number of and yet more accurate extracted roads. To further reduce falsely classified road objects, a solution based on an adoption of LMs is proposed. Finally, to sharpen the extracted roads, a CRF method is added to our framework. The experiments were conducted on Massachusetts road aerial imagery as well as THEOS satellite imagery data sets. The results showed that our proposed framework outperformed Segnet, the state-of-the-art object segmentation technique on any kinds of remote sensing imagery, in most of the cases in terms of precision, recall, and F1.