In order to study the in uence of rotational speed and amplitude on the surface integrity, TC18 titanium alloy samples were milled by the process of conventional milling and longitudinal ultrasonic vibration assisted milling. The experimental data were obtained by dynamometer, thermometer, scanning electron microscope, X-ray diffractometer and three-dimensional surface topography instrument for observation and analysis. The results show that the rotational speed has a signi cant effect on the cutting force, cutting temperature, surface morphology and surface residual stress. Compared with ordinary milling, the surface micro-texture produced by ultrasonic vibration milling is more regular, , and with the increase of rotational speed, the in uence of ultrasonic vibration on cutting force and cutting temperature decrease.There are adverse effects on surface roughness after ultrasonic vibration superposition. The in uence of ultrasonic vibration on the surface residual compressive stress is also greatly reduced when the rotational speed is greater than 2400 rpm. In addition, a certain depth of plastic deformation layer can be formed under the surface of ultrasonic vibration machining, and the depth of deformation layer increases with the increase of vibration.