Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs) and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.
Sugar palm fiber (SPF) is an agro‐waste plant that can be used as potential source of biomass for various biomaterial applications. In this study, sugar palm nanofibrillated cellulose (SPNFC) that was isolated from SPF was used as a nanofiller to reinforce sugar palm starch (SPS) to produce bionanocomposites. To attain SPNFCs, SPF was undergo strong acid and alkaline treatments. Later, the SPNFCs were prepared from SPFs via high pressurized homogenization process. The reinforcement of SPNFCs (0‐1.0 wt%) and SPS is done by using solution casting methods. The films were characterized in terms of physical properties such as light transmittance, moisture content, water solubility, and water absorption. The resulting nanocomposites permitted better water resistance, low moisture absorption, and low light transmittance as compared to control SPS film. Adding 1 wt% SPNFCs loading significantly improved the water absorption and water solubility of the composite film by 24.13% and 18.60%, respectively, compared with the control SPS film. This was attributed to the high compatibility between the SPNFCs and SPS matrixes, which composed of the multi‐hydroxyl polymer having three hydroxyl groups per monomer. Thus, this study is to show the potential of SPS/SPNFCs nanocomposite films in packaging industries.
In this study, the effects of graphene oxide (GO) on composites based on epoxy resin were analyzed. Different contents of GO (1.5-6 vol.%) were added to epoxy resin. The GO/epoxy composite was prepared using the casting method and was prepared under room temperature. Mechanical tests' results such as tensile test, impact test and hardness test show enhancements of the mechanical properties of the GO/epoxy composite. The experimental results clearly show an improvement in the Young's modulus, tensile strength and hardness. The impact strength was seen to decrease, pointing to brittleness increase of the GO/epoxy composite. A microstructure analysis using Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) analysis was also performed, which showed how GO impeded the propagation of cracks in the composite. From the SEM images we observed the interface between the GO and the epoxy composite. As can be seen from this research, the GO/epoxy composites can be used for a large number of applications. The results of this research are a strong evidence for GO/epoxy composites being a potential candidate for use in a variety of industrial applications, especially for automobile parts, aircraft components, and electronic parts such as supercapacitors, transistors, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.