The Datian uranium deposit is a migmatite-hosted, high temperature, hydrothermal deposit in the Kangdian region. Detailed information on the chemical composition and formation age of the uraninite remains lacking, which impedes our understanding of uraninite genesis. Two phases of uraninite have been identified according to their relationships with other minerals and their field relationships. The phase 1 (Ur1) uraninite is characterized by local development of microfractures and pores in the crystal of uraninite, a scattered distribution, and irregular crystal shapes, and it is associated with ilmenite, biotite, and rare earth element (REE) minerals (monazite and xenotime). The phase 2 uraninite (Ur2) has anhedral crystal shapes with well-developed microfractures and pores and is associated with pyrite, albite, pyrrhotite, molybdenite, zircon, and chlorite. X-ray element mapping revealed that the distributions of U, Th, and Pb in the Ur1 uraninite are homogeneous, whereas those in the Ur2 uraninite are heterogeneous. The results of the electron microprobe analysis (EMPA) show that the UO2 and PbO contents of the Ur1 and Ur2 uraninite do not vary significantly. The high ThO2 contents of the Ur1 (1.08–1.68 wt %) and Ur2 uraninite (3.41–4.83 wt %) indicate that they formed at different temperatures. The laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis results show that the ∑REE of the Ur1 uraninite (3747.5–7032.3 ppm) is lower than that of the Ur2 uraninite (8369.2–11,484.3 ppm), and the REE patterns of the Ur1 and Ur2 uraninite are sickle-shaped with large negative Eu anomalies. The LA-ICP-MS U–Pb dating results revealed that the ages of the Ur1 (841.4 ± 4.0 Ma) and Ur2 (834.5 ± 4.1 Ma–837.2 ± 4.5 Ma) uraninite are in consistent with that of the migmatite. Thus, the Datian uranium deposit underwent at least two hydrothermal events, and the uraninite was formed due to the migmatization.