Abstract:We study waveguide fabrication in lithium-niobo-phosphate glass, aiming at a practical method of single-stage fabrication of nonlinear integrated-optics devices. We observed chemical transformations or material redistribution during the course of high repetition rate femtosecond laser inscription. We believe that the laser-induced ultrafast heating and cooling followed by elements diffusion on a microscopic scale opens the way toward the engineering non-equilibrium sates of matter and thus can further enhance Refractive Index (RI) contrasts by virtue of changing glass composition in and around the fs tracks.
References and links1. H. Misawa and S. Juodkazis, eds., 3D Laser Microfabrication. Principles and Applications (Wiley-VCH, Weinheim, 2006). 2. R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, SpringerLink : Bücher (Springer Berlin Heidelberg, 2012).