The longstanding demands for micropressure detection in commercial and industrial applications have led to the rapid development of relevant sensors. As a type of long-term favored device based on microelectromechanical system technology, the piezoresistive micropressure sensor has become a powerful measuring platform owing to its simple operational principle, favorable sensitivity and accuracy, mature fabrication, and low cost. Structural engineering in the sensing diaphragm and piezoresistor serves as a core issue in the construction of the micropressure sensor and undertakes the task of promoting the overall performance for the device. This paper focuses on the representative structural engineering in the development of the piezoresistive micropressure sensor, largely concerning the trade-off between measurement sensitivity and nonlinearity. Functional elements on the top and bottom layers of the diaphragm are summarized, and the influences of the shapes and arrangements of the piezoresistors are also discussed. The addition of new materials endows the research with possible solutions for applications in harsh environments. A prediction for future tends is presented, including emerging advances in materials science and micromachining techniques that will help the sensor become a stronger participant for the upcoming sensor epoch.