Quantum dots embedded within nanowires represent one of the most promising technologies for applications in quantum photonics. Whereas the top-down fabrication of such structures remains a technological challenge, their bottom-up fabrication through self-assembly is a potentially more powerful strategy. However, present approaches often yield quantum dots with large optical linewidths, making reproducibility of their physical properties difficult. We present a versatile quantum-dot-innanowire system that reproducibly self-assembles in core-shell GaAs/AlGaAs nanowires. The quantum dots form at the apex of a GaAs/AlGaAs interface, are highly stable, and can be positioned with nanometre precision relative to the nanowire centre. Unusually, their emission is blue-shifted relative to the lowest energy continuum states of the GaAs core. Large-scale electronic structure calculations show that the origin of the optical transitions lies in quantum confinement due to Al-rich barriers. By emitting in the red and self-assembling on silicon substrates, these quantum dots could therefore become building blocks for solid-state lighting devices and third-generation solar cells. S emiconductor quantum dots have been shown to be excellent building blocks for quantum photonics applications, such as single-photon sources and nano-sensing. Desirable properties of a single-photon emitter include high-fidelity anti-bunching (very small g 2 (t = 0)), narrow emission lines (ideally transform limited to a few microelectronvolt) and high brightness (>1 MHz count rate on standard detector). For simplicity, these properties should be achieved either with electrical injection or non-resonant optical excitation. Desirable properties of a nano-sensor include a high sensitivity to local electric and magnetic fields, with the quantum dot located as close as possible to the target region. A popular realization involves Stranski-Krastanow InGaAs quantum dots embedded in a three-dimensional matrix, which are excellent building blocks for the realization of practical singlephoton sources 1 . However, the photon extraction out of the bulk semiconductor is highly inefficient on account of the large mismatch in refractive indices of GaAs and vacuum. An attractive way forward is to embed the quantum dots in a nanowire 2 . To solve the extraction problem, the nanowire is designed to operate as a single-mode waveguide, a so-called photonic nanowire, with a taper as photon out-coupler 3 . Also, for nano-sensing applications, a quantum dot in a nanowire can be located much closer to the active medium. Top-down fabrication of the photonic waveguide is technologically complex, however. Bottom-up fabrication of the photonic waveguide is very attractive 4-6 , but it is at present challenging to self-assemble quantum dots in the nanowires with narrow linewidths and high yields 7,8 . Nano-sensing applications are at present not highly developed. Other degrees of freedom of the quantum-dot-in-nanowire system that can be usefully exploited are the mechanical modes ...