2021
DOI: 10.36227/techrxiv.14763498.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Ferrimagnetic Synapse Devices for Fast and Energy-Efficient On-Chip Learning on An Analog-Hardware Neural Network

Abstract: we have modeled domain-wall motion in ferrimagnetic and ferromagnetic devices through micro magnetics and shown that the domain-wall velocity can be 2–2.5X faster in the ferrimagnetic device compared to the ferromagnetic device. We also show that this velocity ratio is consistent with recent experimental findings Because of such a velocity ratio, when such devices are used as synapses in the crossbar-array-based fully connected network, our system-level simulation here shows that a ferrimagnet-synapse-based cr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 31 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?